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ABSTRACT

There are natural geometric patterns in biology. Tissue lay-

ers, for example, differ mainly in the spatial distributions, size

and packing of microstructure components such as the red

blood cells, nuclei and cytoplasm etc. Expressive visualiza-

tion by using the N-point correlation functions, involves the

discovery of feature spaces that estimate and spatially delin-

eate component distributions unique to a salient tissue. These

functions provide feature spaces that are used to set useful

transfer functions. We obtain insightful 3D visualizations of

the epithelial cell lining in mouse mammary ducts and evolv-

ing structures in a zebrafish embryo. These are large datasets

acquired from light and confocal microscopy scanners respec-

tively.

Index Terms— microscopy imaging, N-point functions,

tissue segmentation

1. INTRODUCTION

We wish to develop a general purpose methodology that uses

geometric patterns and statistical distributions in the visual-

ization of microscopy datasets. In biology, some of the struc-

tures are not immediately apparent at a microscopic scale.

Figure 1(a) shows a typical image of a tissue employed in

prototypical phenotyping studies [3]. Note the clear lack of a

global 3D description of microscopic structures that populate

each of the image planes. The cells on each plane are best

identified by the presence of nuclei; however, the extent and

proliferation of the nuclei in typical cellular constellations is

not easily demarcated in 3D. Further, tubular structures (e.g.,

ducts) which are prevalent in lesser numbers can only identi-

fied on each slide as a distinct projection of a complex tortu-

ous 3D object.

In order to explore such structures, we need to determine

their spatial locations of structures and enhance their visibil-

ity during scientific exploration. Spatial transfer functions

available in the literature focus on structures that are in close

proximity to other landmarks/surfaces. However, in biologi-

cal data, salient structures are marked by a change in spatial

distributions – which we intend to capture and hence naturally

arrive at these structures when exploring. Note that the size

of 3D datasets available in microscopy domains typically are

quite large and manual searching is too cumbersome.

Furthermore, traditional transfer functions that are based

on histogram features of the image intensities and gradients

fails to resolve hidden 3D structures since the structural cor-

relation across image planes is only partial. Figure 1(d) shows

the rendering of a duct that we had to manually extract from

the raw dataset. The lack of structural descriptions is evident

in comparison to our automatically-detected-duct-renderings

in (e) and (f). In general, capturing this structure and organi-

zation seems intractable owing to biological variations within

and across samples. Biological structure in a soft tissue is de-

formable and seems to have non-linear structures with com-

plex topology. The color luminance depends on acquisition

parameters, staining etc on an image plane. There are im-

age gradients within and across image planes. In addition,

tremendous inter-dataset variations in shapes and size do not

permit any standard methodology [5].

However, biological structure may be described in terms

of physical cellular matrices. These matrices (of μm dimen-

sions) include a coherent and mostly periodic collection of

cells. At microscopic scales, tissue regions are formed from

these matrices and effectively allow a hierarchical descrip-

tion of various larger structures. Hence, the question arises

if there is a way to measure and differentiate microstructure

ensembles. For example, in the H&E stained images from

histology, a typical region consists of nuclei, red-blood cells

(RBCs), cytoplasm and vacuous white space.

Microstructure, irrespective of its origin (material science

or biology), may be measured as a collection (ensemble) of

points, lines, internal surfaces, and volumes [1]. Each micro

structural feature is associated with size, shape, volume, sur-

face area, length and curvature attributes etc., morphological

orientation, and location. Statistical distributions of such ge-

ometric attributes of ensembles collectively specify the geo-

metric state of a microstructure. Mathematically, these prop-

erties of the microstructure are formalized by the statistical

N-point correlation functions (N-pcfs) [7]. There are funda-

mental geometric constraints (such as polygonal separation of

microstructure components) that are enforced while comput-

ing N-pcfs [2]. These constraints, therefore, provide useful
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Fig. 1. (a) A histology section of the mouse mammary gland showing several duct cross-sections. (b) A zoomed duct section

reveals the characteristic packing densities of the epithelial cell lining. (c) Color-mapped 2-pcf feature values. (d) Rendering

of a duct from the raw data. The duct portion was manually cropped out of the large dataset. (e) Categorical visualization
using the N-pcf feature values showing the chimney-like outer wall of the epithelial cells. (f) Axial section showing the lumen

trapped in the duct. (g) An advanced visualization incorporating the 2-pcf feature space with nuclei segmentations.

user-input in choosing a certain functional form that is best

representative of the microstructure.

Fig. 2. The figure shows four different microstructure en-

sembles composed of 2-phase components, namely, phase

0 (black) and phase 1 (white). A plot of the orientation-

averaged function Pk
00 for varying k reveals different charac-

teristic signatures.

2. N-POINT CORRELATION FUNCTIONS

To simplify the presentation, assume the presence of only two

phases in the microstructure, namely, phase 0 and phase 1.

Let p ∈ Ω be any point in the microstructure C : Ω → {0,1}.

Further, let Ωp ⊂Ω be a suitable neighborhood of p. Consider

placing a N-sided regular polyhedron with edge length k and

orientation (θ ,φ ) in Ωp. The probability that all the N-vertices

lie in phase 0 is defined as an N-point correlation function (N-

pcf), Pk
i1i2...iN (p,θ ,φ), where im = 0 for m ∈ 1,2, ...,N. The

subscript im denotes the phase of the mth polyhedron vertex.

The N-pcf for a regular polyhedron of edge length k depends

on its orientation (θ ,φ) and location p in the microstructure.

In a similar manner, other forms of the point correlation func-

tion (with auto and cross-correlation phases at the vertices)

may be defined. The orientation averaged N-pcf Pk
i j, which

are of interest in this work, can be computed from the corre-

sponding direction-dependent functions P̃k
i j(θ ,φ) as follows:

< Pk
i1i2...iN (p) >=

1

2π

∫ 2π

0

∫ π
2

0
P̃k

i1i2...iN (p,θ ,φ)dθdφ (1)
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We now provide some insight into the probability mea-

sures captured by these functions. Consider the simple case

of a 1-pcf, say P0. It represents the probability that a point

p is in phase 0. This quantity measures the volume fraction

of phase 0 in the microstructure. Similarly, P1 is the volume

fraction of phase 1 and we have P0 +P1 = 1.

A 2-pcf is the probability of a straight line segment of

length k randomly placed in the microstructure such that one

end is in phase i1 ∈ {0,1} and the other end is in phase i2 ∈
{0,1}. For a 2-phase microstructure, there are four possible

2-pcf s namely Pk
00, Pk

01, Pk
10 and Pk

11 and:

Pk
00 + Pk

01 +Pk
10 +Pk

11 = 1 Pk
01 = Pk

10;

Pk
00 + Pk

01 = P0; Pk
10 +Pk

11 = P1 (2)

Please refer to Figure 2 wherein four different microstruc-

tures composed of black (0) and white (1) phases are consid-

ered. Note that each individual texture class in the image pro-

vides a unique or characteristic 2-pcf feature measure for a

certain value of the separation distance k. Figure 2(right), a

plot of the P11 measure for the four textures as a function of k
is plotted. We observe that the four textures present character-

istic signatures that enable their identification. For a given im-

age, it is not known a priori what are the values of k. Hence,

in practice, a range of values need to be explored while esti-

mating these functions or alternatively, the given image needs

to be inspected for suitable separation distances among com-

ponents. The set of possible integral values that k may assume

is represented by the discrete set K ⊂ Z. The N-pcf feature

descriptor for a tissue region represented by P(k)
i1i2..iN ∈ ℜK×QN

is an N +1 mode tensor.

Essentially, a N-pcf is a multivariate distribution function.

To estimate this function, we resort to using Monte Carlo sam-

pling of the material components distribution using a sliding

window (Ωp). Conceptually, for a given separation length k,

one needs to create auto- and cross-histograms at every point

p in the discrete image plane. To estimate the functions at p,

the number of samples (S) and window sizes (Ωp) need to be

specified. The minimum window size is proportional to the

maximum separation distance that the functions will be eval-

uated for, and the sample size is chosen to keep the variance

of the measured result to a desired range.

To evaluate the 2-pcf for separation distance k and phases

i, j in a region containing m-phases, we place a number of

randomly oriented and positioned lines. We then count the

fraction of line segments that have an end point in phase i and

the other in j to give an estimate of the 2-pcf Pk
i j.

3. RESULTS

From Figure 1(b), we observe that the ducts have a concentric

pattern of epithelial cells embedded in the extracellular ma-

terial. The remainder of the tissue consists of fat cells with

sparse populations of the nuclei and little or no extracellular

material. Hence, we infer that a 2-pcf for the nuclei phase

and extracellular material phase is sufficient to outline duct

profiles. A stacking of the 2-pcf features computed on 2D im-

ages provided the following visualizations in 3D. Figure 1(c)

shows the generated feature values on the same mammary

slice and the result after applying a threshold. Figure 1(e)

shows the wall of the epithelial cell lining that is akin to a

brick chimney wall. Figure 1(f) is an axial section of the duct

revealing the lumen that lies trapped in the duct. Our visu-

alizations allow biologists to see beyond the 2D planes that

they are accustomed to. In phenotyping studies, genetic mu-

tation leads to a change in structure and organization. Our

techniques will allow the assessment of such changes quite

naturally given our feature measurements.

A clonal colony consists of closely packed cells with low

separation distance in the image domain. Using the cell seg-

mentations in each frame, we group cells into existing clonal

colonies. This requires us to develop a notion of distance of

a cell from a clonal colony. The geodesic distance between

a cell and the colony should be low if the cell belongs to the

colony and vice-versa. Earlier, we mentioned about the sim-

ilarity in cellular arrangements with material microstructure.

Based on this observation, we utilize the N-point correlation

functions (N-pcfs) to define a distance metric. These func-

tions measure the cellular packing densities and evaluate to a

high value in the interior of a colony region and diminish at

the boundaries.

For this task, we are interested in temporally tracking the

evolution of clonal colonies rather than individual cells. A

segmentation of the individual cells is first achieved in each

frame by using standard algorithms from literature [4]. We

begin with a manual colony segmentation in the first frame.

Based on the colony boundaries determined in the preceding

frame, cells are grouped into colonies using a distance metric.

Consequently, all the cells belonging to the same colony are

grouped to obtain the current colony boundary.

We now describe the distance metric that we compute [6].

Within a colony region, P11 (where 0 represents the back-

ground and 1 represents the nuclei phase) has a high value

(close to 1) than elsewhere (Figure 3a). Therefore, a geodesic

distance metric G = ∇P11∇PT
11 is defined on the 2-pcf mani-

fold to measure proximity during tracking (Figure 3b).

We reason that the performance of our algorithm depends

on the 2-pcf in effectively defining a colony region. In or-

der to validate our algorithm, consecutive frames were re-

viewed and all pertinent colonies were delineated with bound-

aries. We compared the algorithm-detected colony cells and

the ground-truth colony cells. The matched pairs were sepa-

rated and counted in 4 categories: (i) a - true-positives (ii) b -

false-positives (iii) c - false-negatives (iv) d - true-negatives.

Thus, one can define the sensitivity S = a
a+c , specificity Sp =

d
b+d and error E = b+c

a+b+c+d . Our results are presented on five

datasets in Table 1. The first 3 entries are for the three frames
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(a) (b) (c) (d)

Fig. 3. (a) Phase-contrast microscopy images of mutated cell colonies that are rapidly proliferating in culture. Each colony is

marked by a dense packing of cells, (b) 2-pcf evaluated on the first frame shown in (a), (c) Voronoi segmentation on the 2-pcf
manifold based on colony boundaries of the preceding frame (c) Colony segmentations.

of a single dataset and the last entry averages the parameters

for the remaining four datasets.

Frame Cell Counts S Sp E
Frame 1 378 0.9134 0.8827 0.0215

Frame 2 610 0.8407 0.8222 0.123

Frame 3 794 0.7807 0.8022 0.1733

Average - 0.8417 0.8322 0.1033

Table 1. Sensitivity/specificity values for colony tracking

We observe that the framework has a good sensitivity (>
0.84), specificity (> 0.83) and with a low error rate (< 0.15)

on average. It is easy to see that the performance of the al-

gorithm is best in the earlier frames and relatively diminishes

in later frames. This is expected since the extensive clonal

growth creates merged boundaries. In turn, this leads to the

cells lying on the Voronoi boundaries to be easily affected.

We also observed in several instances that a single colony in

the starting frame emerged as two separate colonies in later

frames. As a result of which the tracking step combined the

two colonies into one of the same affiliation.

4. SUMMARY AND FUTURE WORK

In this paper, we described a tissue visualization algorithm

that is applicable to optical microscopy data. We estimate

the packing and material component distributions locally us-

ing the N-point correlation functions. These functions are re-

alized using suitable windowing and sampling strategies to

provide feature representations. Our methods have been ap-

plied in two phenotyping studies involving the mouse mam-

mary ducts and zebrafish embyrogenesis. In future, we would

like to rigorously evaluate the N-pcf features towards setting

useful transfer functions that enhance the expressivity of the

visualization process.
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